DFT-D3 study of H2 and N2 chemisorption over cobalt promoted Ta3N5-(100), (010) and (001) surfaces.
نویسندگان
چکیده
The reactants for ammonia synthesis have been studied, employing density functional theory (DFT), with respect to their adsorption on tantalum nitride surfaces. The adsorption of nitrogen was found to be mostly molecular and non-activated with side-on, end-on and tilt configurations. At bridging nitrogen sites (Ta-N-Ta) it results in an azide functional group formation with a formation energy of 205 kJ mol-1. H2 was found also to chemisorb molecularly with an adsorption energy in the range -81 to -91 kJ mol-1. At bridging nitrogen sites it adsorbs dissociatively forming >NH groups with an exothermic formation energy of -175 kJ mol-1 per H2. The nitrogen vacancy formation energies were relatively high compared to other metal nitrides found to be 2.89 eV, 2.32 eV and 1.95 eV for plain, surface co-adsorbed cobalt and sub-surface co-adsorbed cobalt Ta3N5-(010). Co-adsorption of cobalt was found to occur mostly at nitrogen rich sites of the surface with an adsorption energy that ranged between -200 to -400 kJ mol-1. The co-adsorption of cobalt was found to enhance the dissociation of molecular hydrogen on the surface of Ta3N5. The studies offer significant new insight with respect to the chemistry of N2 and H2 with tantalum nitride surfaces in the presence of cobalt promoters.
منابع مشابه
DFT-D3 Study of Molecular N2 and H2 Activation on Co3Mo3N Surfaces
Cobalt molybdenum nitride (Co3Mo3N) is one of the most active catalysts for ammonia synthesis, although the atomistic details of the reaction mechanism are currently unknown. We present a dispersioncorrected (D3) DFT study of the adsorption and activation of molecular nitrogen and hydrogen on Co3Mo3N-(111) surfaces to identify possible activation sites for ammonia synthesis. H2 was found to ads...
متن کاملKCl Promoted Cobalt-iron Nanocatalysts Supported on Silica: Catalytic Performance and Characterization in Fischer-Tropsch Synthesis
The SiO2 supported cobalt-iron nano catalysts were prepared by the sol-gel method. This research investigated the effects of (Co/Fe) wt.%, different Co/Fe ratio at different temperature and loading of KCl wt.% for Fisher-Tropsch synthesis (FTS). The results were showed that the catalyst containing 50 wt.% (Co/Fe)/SiO2 (Co/Fe ratio is 70/30) which promoted with 0.6 wt.% KCl is an optimal nano ca...
متن کاملInvestingation and Chemisorption study of Oxygen Atoms and Cr (100) surface by DFT calculation
This study concerns about quantum chemical modeling behavior of 02 on Cr (100)surface by using density functional theory (DFT) by LANL2DZ and 6 — 31G* basissets, we presented the results of our first principles electronic structure calculationson the 02 molecules and their interface with Cr (100) surface. The chromium metalhas the body-centered cubic structure, and chromium cluster has five Cr ...
متن کاملDFT Investigations for sensing capability of a single-walled Carbon nanotube for adsorptions H2, N2, O2 and CO molecules
Single-walled carbon nanotubes (SWCNTs) have a great deal of attention due to their unique properties. These properties of SWCNTs can be used in various devices such as nanosensors. SWCNTs nanosensors have fast response time and high sensitivity to special gas molecules which is very favorable for important applications. Recently, gas adsorption over outer surface of SWCNTs nanosensors was argu...
متن کاملDFT Investigations for sensing capability of a single-walled Carbon nanotube for adsorptions H2, N2, O2 and CO molecules
Single-walled carbon nanotubes (SWCNTs) have a great deal of attention due to their unique properties. These properties of SWCNTs can be used in various devices such as nanosensors. SWCNTs nanosensors have fast response time and high sensitivity to special gas molecules which is very favorable for important applications. Recently, gas adsorption over outer surface of SWCNTs nanosensors was argu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 19 19 شماره
صفحات -
تاریخ انتشار 2017